Brr

01/09

How and
When to Use
Record
Classes In
Java

SWIPE —_—




Brr

02/09

What is a Record Class?

A record class in Java is a special type of class
that is concise and designed to hold
Immutable data. Unlike traditional classes,
records automatically generate many
commonly used methods, such as:

e Getters for all fields

e equals|)

e hashCode()

e toString()

— SR —



Brr

03/09

Creating a Record Class

public record Person(String name, int age) {

}

This simple declaration:
e Defines a Person class with name and age
fields.
e Automatically generates the constructor,
getters (hame() and age()), equals(),
hashCode(), and toString() methods.

— SR —



B

How to Use Record
Classes

Person person = new Person("Alice", 30);
System.out.println(person.name()); // Alice
System.out.println(person.age()); // 30

System.out.println(person); //
Person[name=Alice, age=30]

Records come with pre-defined methods:
e Getters: name() and age()
e toString(): Provides a string representation
of the record
e equals() and hashCode(): Implements
value-based equality

— SR —



Brr

Whenhn to Use Record

Classes

1. Immutable Data Carriers
Records are ideal for classes that primarily
serve to hold data:

e DTOs (Data Transfer Objects)

e Value Objects

e Configuration Settings

2. Simplifying Code

When you need a simple class to hold data
and don't want to write boilerplate code,
records are a great fit.

— SR —



Brr

06/09

When Not to Use Record
Classes

1. Mutable Data
If you need mutable fields, a traditional class is

more suitable since record fields are implicitly
final.

2. Complex Behavior
If your class requires complex logic, inheritance,

or behavior beyond holding data, use a
traditional class.

— SR —



Brr

07/09

Examples of Record
Classes in Action

// Example 1: Simple Data Carrier

public record Point(int x, int y) {
}.

Point point = new Point(10, 20);

System.out.println(point); // Point[x=10, y=20]




Brr

08/09

Examples of Record
Classes in Action

// Example 2: DTO for API Response

public record ApiResponse(int statusCode, String
message) {

hy

ApiResponse response = new ApiResponse(200, "Success");

System.out.println(response);
// ApiResponse[statusCode=200, message=Success]




Brr

09/09

Have you
used record
classes in
Java?

COMMENT BELOW



